Acta Crystallographica Section B

Structural

Science

ISSN 0108-7681

S. C. Abrahams

Physics Department, Southern Oregon University, Ashland, OR 97520, USA

Correspondence e-mail: sca@mind.net

Structurally ferroelectric SrMgF_{4}

The crystal structure of 0.06% Ce-doped SrMgF_{4}, strontium magnesium tetrafluoride, reported by Ishizawa et al. [(2001), Acta Cryst. C57, 784-786] is shown to satisfy the structural criteria for ferroelectricity and to have a predicted Curie temperature $T_{c} \simeq 1450 \mathrm{~K}$. The estimated spontaneous polarization $P_{s} \simeq 11 \times 10^{-2} \mathrm{Cm}^{-2}$ is consistent with classification as a two-dimensional ferroelectric in which minor Δx and major $\Delta y, \Delta z$ atomic coordinate component displacements are required for ferroelectric switching.

1. Introduction

All members of the $\mathrm{Ba} M \mathrm{~F}_{4}$ family $(M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Zn) were reported by Eibschütz et al. (1969) to exhibit ferroelectricity, each with a spontaneous polarization $\left(P_{s}\right)$ between ~ 7 and $10 \times 10^{-2} \mathrm{C} \mathrm{m}^{-2,1}$ Keve et al. $(1969,1970)$ determined the structure of the family members $M=\mathrm{Mn}$ and Co. The structures of $\mathrm{BaMgF}_{4}, \mathrm{BaFeF}_{4}, \mathrm{BaNiF}_{4}$ and BaZnF_{4}, isostructural with BaMnF_{4} and BaCoF_{4}, were subsequently determined by Gingl (1997), Averdunk \& Hoppe (1988), Cox et al. (1970), von Schnering \& Bleckmann (1968) and Lapasset et al. (1996), respectively. The recent redetermination of the structure of SrMgF_{4} by Ishizawa et al. (2001) raised the possibility, by analogy with the BaMF_{4} family, that it also might be ferroelectric, although it crystallizes in space group $P 112_{1}$, whereas $\mathrm{BaMgF} \mathrm{F}_{4}$ forms in space group $A 2_{1} a m\left(C m c 2_{1}\right)$. SrMgF_{4} was first prepared by Banks et al. (1980) who identified it as orthorhombic, with lattice constants comparable to those of BaMnF_{4}. A negative test for second harmonic generation led them to suggest the space group Amam; they also showed that solid solutions with $\sim 1 \% \mathrm{EuMgF}_{4}$ were photoluminescent. Apart from Banks et al.'s (1980) observation that SrMgF_{4} melts incongruently at $\sim 1175 \mathrm{~K}$ and Bingyi \& Banks (1982) report of a solid-state transformation in the $\mathrm{SrF}_{2}-\mathrm{MgF}_{2}$ binary system at $1080(10) \mathrm{K}$, no additional physical measurements were found in the literature other than spectroscopic, on rare-earth doped SrMgF_{4}, e.g. Wu \& Shi $(1995,1996)$ and Sun et al. (1995). Ishizawa et al. (2001) have now shown that SrMgF_{4} forms a monoclinic superstructure of the earlier orthorhombic arrangement. Analysis of the monoclinic coordinates obtained thereby shows that they fully satisfy the structural criteria for ferroelectricity.

[^0](C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Table 1
Atomic coordinates of SrMgF_{4} at 298 K in space group $P 112_{1}$ (Ishizawa et al., 2001), hypothetical $x^{\prime} y^{\prime} z^{\prime}$ coordinates in supergroup $P 112_{1} / m$, atomic displacements $(\Delta x, \Delta y, \Delta z)$ in \AA at the phase transition and thermal/static $\left(u_{\text {iso }}\right)$ displacement in \AA at 298 K .
$a=7.8249$ (8), $b=7.4930$ (7), $c=16.9248$ (17) A, $\gamma=105.041$ (11) $)^{\circ} . z^{*}=z-0.270842 ; \Delta x=\left(x-x^{\prime}\right) a, \Delta y=\left(y-y^{\prime}\right) b, \Delta z=\left(z^{*}-z^{\prime}\right) c$.

	Wyckoff position $P 112_{1}$, $P 112{ }_{1} / m$	x	y	z^{*}	x^{\prime}	y^{\prime}	z^{\prime}	Δx	Δy	Δz	$u_{\text {iso }}$
Sr1	2(a), 2(e) \dagger	0.18015 (12)	0.2084 (2)	0.24503 (7)	0.18015	0.2084	1/4	0	0	-0.084	0.12 (2)
Sr2	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.33110 (9)	0.8164 (2)	0.40647 (9)	0.32531	0.79732	0.41321	0.045	0.143	-0.114	0.11 (2)
Sr6	2(a)	0.31952 (8)	0.7783 (1)	0.08005 (7)	0.32531	0.7973	0.08679	-0.045	-0.143	-0.114	0.11(2)
Sr3	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.83449 (8)	0.8308 (1)	0.06336 (8)	0.83480	0.8336	0.08204	-0.002	-0.022	-0.316	0.09 (2)
Sr5	2(a)	0.83511 (9)	0.8365 (2)	0.39929 (8)	0.83480	0.8336	0.41797	0.002	0.022	-0.316	0.11 (2)
Sr4	2(a), 2(e)	0.66509 (10)	0.1619 (1)	0.22916	0.66509	0.1619	1/4	0	0	-0.353	0.09 (2)
Mg1	2(a), 2(e)	0.5423 (3)	0.6592 (4)	0.2521 (2)	0.5423	0.6592	1/4	0	0	0.036	0.09 (3)
Mg2	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.5403 (3)	0.6683 (3)	-0.0801 (2)	0.5418	0.6693	-0.0823	-0.012	-0.007	0.037	0.09 (3)
Mg3	2(a)	0.4568 (3)	0.3296 (3)	0.0845 (2)	0.4582	0.3307	0.0823	-0.012	-0.008	0.037	0.08 (3)
Mg4	2(a), 2(e)	0.0379 (3)	0.6634 (4)	0.2520 (2)	0.0379	0.6634	1/4	0	0	0.034	0.09 (3)
Mg 5	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.0432 (3)	0.6633 (3)	-0.0804 (2)	0.0427	0.6672	-0.0834	-0.005	-0.029	0.050	0.08 (3)
Mg6	2(a)	0.9579 (3)	0.3290 (3)	0.0863 (2)	0.9573	0.3328	0.0834	-0.005	-0.028	0.050	0.08 (3)
F1	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.5964 (5)	0.8285 (6)	0.1606 (3)	0.5935	0.8591	0.1720	0.023	-0.229	-0.193	0.11 (4)
F3	2(a)	0.5905 (6)	0.8897 (5)	0.3166 (3)	0.5935	0.8591	0.3280	-0.023	0.229	-0.193	0.12 (4)
F2	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.5008 (6)	0.4286 (5)	0.1952 (3)	0.4879	0.4903	0.1684	0.101	-0.462	0.454	0.11 (4)
F4	2(a)	0.4749 (6)	0.5519 (5)	0.3585 (3)	0.4879	0.4903	0.3316	-0.101	0.462	0.455	0.14 (4)
F5	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.5656 (6)	0.8222 (6)	-0.1750 (3)	0.5954	0.8644	-0.1614	-0.233	-0.317	-0.230	0.12 (4)
F9	2(a)	0.3749 (5)	0.0934 (5)	0.1478 (3)	0.4046	0.1356	0.1614	-0.232	-0.317	-0.230	0.11 (4)
F6	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.5779 (6)	0.8994 (5)	-0.0147 (3)	0.5833	0.8479	-0.0002	-0.042	0.386	-0.246	0.11 (4)
F8	2(a)	0.4114 (6)	0.2036 (6)	-0.0144 (3)	0.4167	0.1521	0.0002	-0.041	0.386	-0.246	0.13 (4)
F7	2(a), 2(d)	0.5463 (5)	0.5698 (5)	0.0320 (2)	1/2	1/2	0	0.362	0.523	0.542	0.11 (4)
F10	2(a), 2(e)	0.7898 (5)	0.6663 (7)	0.2710 (3)	0.7898	0.6663	1/4	0	0	0.355	0.11 (4)
F11	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.2826 (5)	0.6224 (6)	-0.0666 (3)	0.2932	0.6676	-0.0772	-0.084	-0.339	0.179	0.13 (4)
F24	2(a)	0.6963 (5)	0.2872 (6)	0.0878 (3)	0.7068	0.3324	0.0772	-0.083	-0.339	0.179	0.13 (4)
F12	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.2190 (5)	0.3753 (6)	0.0962 (3)	0.2076	0.3296	0.0889	0.090	0.343	0.124	0.13 (4)
F23	2(a)	0.8038 (5)	0.7162 (6)	-0.0815 (3)	0.7924	0.6704	-0.0889	0.090	0.343	0.125	0.12 (4)
F13	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.0584 (5)	0.7965 (6)	0.1540 (3)	0.0839	0.8507	0.1707	-0.201	-0.406	-0.282	0.12 (4)
F15	2(a)	0.1094 (5)	0.9048 (5)	0.3127 (3)	0.0839	0.8507	0.3293	0.201	0.406	-0.282	0.11 (4)
F14	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.9613 (6)	-0.5748 (5)	0.1992 (3)	1.0040	-0.5050	0.1686	0.334	-0.523	0.518	0.12 (4)
F16	2(a)	0.9534 (5)	0.4351 (5)	-0.1379 (3)	0.9960	0.5050	-0.1686	-0.333	-0.524	0.519	0.12 (4)
F17	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.0965 (5)	0.8283 (5)	-0.1736 (3)	0.0860	0.8645	-0.1624	0.083	-0.271	-0.190	0.10 (4)
F21	2(a)	0.9246 (5)	0.0993 (5)	0.1512 (3)	0.9140	0.1355	0.1624	0.084	-0.271	-0.190	0.09 (4)
F18	$\begin{aligned} & 2(a) \\ & 4(f) \end{aligned}$	0.1196 (6)	0.8921 (5)	-0.0143 (3)	0.0961	0.8654	-0.0036	0.185	0.200	-0.181	0.11 (4)
F20	2(a)	0.9274 (6)	0.1613 (6)	-0.0071 (3)	0.9039	0.1346	0.0036	0.185	0.200	-0.181	0.11 (4)
F19	2(a), 2(b)	0.9808 (5)	0.5533 (5)	0.0262 (3)	0	1/2	0	-0.151	0.399	0.443	0.12 (4)
F22	2(a), 2(e)	0.2901 (6)	0.6563 (7)	0.2393 (3)	0.2901	0.6563	1/4	0	0	-0.181	0.13 (4)

\dagger Equivalent 2(a) positions in space group $P 112_{1}, x, y, z ; \bar{x}, \bar{y}, \frac{1}{2}+z$. In $P 112_{1} / m$ for $4(f), x, y, z ; \bar{x}, \bar{y}, \frac{1}{2}+z ; \bar{x}, \bar{y}, \bar{z} ; x, y, \frac{1}{2}-z$. For $2(e), x, y, \frac{1}{4}, \bar{x}, \bar{y}, \frac{3}{4} ;$ for $2(d), \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$; and for $2(b)$, $0, \frac{1}{2}, 0 ; 0, \frac{1}{2}, \frac{1}{2}$.

2. Atomic coordinates, structural criteria for ferroelectricity and predicted Curie temperature of SrMgF_{4}

The unusual displacement of all Mg atoms from the centers of their F-atom octahedra in SrMgF_{4} resulting from the proposed space group Amam led Ishizawa et al. (2001) to redetermine the atomic arrangement. Refinement of 326 parameters in
space group $P 112_{1}$ was undertaken using 4130 independent absorption- and extinction-corrected Friedel pairs measured at 298 K with $I>3 \sigma(I) ; 239$ reflections were excluded. The composition of the Ce -doped Bridgman-grown crystal, $\mathrm{Sr}: \mathrm{Ce}=$ 0.9994:0.0006, was assumed equivalent to stoichiometric in the structure analysis. The final values of $R=0.044, w R=0.037$ are given for the $x y z$ atomic coordinates presented in Table 1, in
which an origin shift of -0.27084 has been applied along the polar axis. This shift minimizes the total $\Sigma \Delta z$, see below, for a transition to a prototype structure with the supergroup assumed to be $P 112_{1} / m$. Alternative supergroups may be possible, but are not expected to change the present conclusions significantly; experimental investigation at higher temperatures would be appropriate. Table 1 additionally gives the set of $x^{\prime} y^{\prime} z^{\prime}$ coordinates in the prototype structure derived from the $x y z$ values under the requirement of conformity with the symmetry of Wyckoff positions $4(f), 2(e), 2(d)$ or $2(b)$ in space group $P 112_{1} / m$, also the corresponding $x-x^{\prime}=$ $\Delta x, y-y^{\prime}=\Delta y, z-z^{\prime}=\Delta z$ axial displacements. Table 1 shows that no atom in space group $P 112_{1}$ is any further than $\Delta x=0.36, \Delta y=0.52$ or $\Delta z=0.54 \AA$ from locations that fulfill the symmetry of space group $P 112_{1} / m$ in the predicted phase I.

The Δz magnitudes in Table 1 fully satisfy the structural criteria for ferroelectricity (Abrahams, 2000), namely:
(a) that the i th atom forming the shortest and least-ionic bonds in the unit cell $\left(\mathrm{Mg}\right.$ in the case of $\left.\mathrm{SrMgF}_{4}\right)$ undergoes no polar displacement $\Delta z_{l} \gtrsim 1 \AA$ between the location reported at $x_{i} y_{i} z_{i}$ and that at which the resulting spontaneous polarization P_{s} vanishes, and
(b) that the largest Δz_{i} exceeds $\sim 0.1 \AA$ or the r.m.s. thermal or static displacement u of that i th atom.
SrMgF_{4} is hence confidently predicted to be a new ferroelectric crystal.

The Curie temperature T_{c} of a ferroelectric with known crystal structure may also be predicted if the i th atom therein occupies an octahedron of O or F atoms, as in the present case. Abrahams et al. (1968) have shown, for such structures, that

$$
\begin{equation*}
T_{c}=(\kappa / 2 k)\left(\Delta z_{i}\right)^{2} \mathrm{~K} \tag{1}
\end{equation*}
$$

where the force constant $\kappa \simeq 5.52 \mathrm{kPa}, k$ is Boltzmann's constant, Δz_{i} is the largest displacement along the polar c axis by the i th atom defined above and $\kappa / 2 k=2.00$ (9) $\times 10^{4} \mathrm{~K}^{\AA^{-2}}$.

The six independent MgF_{6} octahedra in SrMgF_{4} phase II may be seen in Table 1 to undergo displacement at the transition to phase I by forming three symmetry-related pairs of octahedra. The Mg 1 and Mg 4 pair occupies the mirror plane at $z=\frac{1}{4}$, the $\mathrm{Mg} 2, \mathrm{Mg} 3$ and $\mathrm{Mg} 5, \mathrm{Mg} 6$ pairs in Table 1 becoming related by an inversion center. However, symmetry equivalents of Mg 3 and Mg 6 in Table 1 are also related to Mg 2 and Mg 5 by the mirror plane at $z=\frac{1}{4}$. Four F atoms occupy Wyckoff symmetry positions $2(b), 2(d)$ or $2(e)$ above T_{c}, the remaining 20 F atoms occuping the $4(f)$ general positions.

It is noteworthy that four of the six i th atoms in SrMgF_{4} have variable polar coordinates above T_{c}. In consequence, the uncertainty in Δz_{i} is propagated to that in the predicted magnitude of T_{c}. By contrast, each i th atom in a ferroelectric with symmetry higher than monoclinic generally undergoes displacement to special positions at or above T_{c}. In the case of ferroelectric YMnO_{3} in space group $\mathrm{P6}_{3} \mathrm{~cm}$, for example, $z^{\prime}(\mathrm{Y} 1) \rightarrow \frac{1}{2}, z^{\prime}(\mathrm{Y} 2) \rightarrow 0$ and $z^{\prime}(\mathrm{Mn}) \rightarrow \frac{1}{4}$ as $T \rightarrow T_{c}$ (Abrahams, 2001); no further uncertainty beyond that in the polar coordinates and the constant in (1) is thereby introduced in
the resulting Δz or T_{c} magnitudes in the case of higher symmetry ferroelectrics.

The most reliable measure of uncertainty in Δz_{i} for SrMgF_{4} would be a comparison of the z^{\prime} coordinates in Table 1 with an accurate experimental determination above T_{c}; direct measurement of T_{c} would also allow an estimate of uncertainty. In the absence of such measurement, however, differences between $\mathrm{Mg} 2, \mathrm{Mg} 3, \mathrm{Mg} 5$ and $\mathrm{Mg} 6 z$ coordinates may provide substitute indicators of uncertainty. Assuming these four Mg atoms have a common $z^{\prime}= \pm 0.0828$ above T_{c} (see Table 1) leads to $\sigma\left\langle\Delta z_{i}(\mathrm{Mg})\right\rangle=0.052 \AA$; if the Mg atoms were to form independent pairs with $z^{\prime}= \pm 0.0823$ and ± 0.0834, then the mean uncertainty would be reduced to $\sim 0.04 \AA$. The polar coordinates of the Mg atoms are, however, not necessarily confined to these alternatives. The uncertainty in Δz_{i} may hence differ strongly from either estimate.

Denoting octahedra by their Mg^{2+} ions, the centers of the F^{-}ion charge in Mg 1 (oct) -Mg 6 (oct) are located, respectively, at $z^{\prime}=0.2569(2), \quad-0.0746(2), \quad 0.0908(3), \quad 0.2564(3)$, -0.0746 (2) and 0.0923 (2). Each charge center is displaced further from the paraelectric position, corresponding to the $z^{\prime}(\mathrm{Mg})$ coordinates in Table 1, than the central Mg^{2+} ion and with the same sense. The effective displacement $\Delta z_{i}\left(\mathrm{Mg}^{2+}\right)$ is thus given by the octahedral displacement which ranges from $0.108 \AA$ for Mg 4 (oct) to $0.150 \AA$ for Mg 6 (oct). The Curie temperature in (1) necessarily corresponds to the largest Δz_{i}, hence T_{c} for SrMgF_{4} is predicted to be 450 K with an uncertainty that may range between 370 and 270 K .

An anomaly at 1080 (10) K was observed by Bingyi \& Banks (1982) for all compositions in the binary system $\mathrm{Sr}_{x} \mathrm{Mg}_{1-x} \mathrm{~F}_{4}$ from $x=0.15$ to $0.975 . \mathrm{SrF}_{2}$ is cubic with $a=$ $5.794 \AA, \mathrm{MgF}_{2}$ is tetragonal with $a=4.628$ and $c=3.045 \AA$, both structures differing considerably from that of SrMgF_{4}. Careful calorimetric and dielectric study of stoichiometric SrMgF_{4} is necessary to determine if the variable-composition solid-state transformation noted is related to T_{c}.

3. Atomic displacement dimensionality and spontaneous polarization

The atomic displacements undergone by members of the ferroelectric BaCoF_{4} family in the course of polarization reversal are strictly two-dimensional, all atoms in phase II (space group $A 2_{1} a m$) occupying a mirror symmetry plane (Keve et al., 1970); the hypothetical phase I with $T_{c}>$ m.p. is expected to have the space group Amam. The corresponding atomic displacements to the paraelectric state in SrMgF_{4} are substantial in all three dimensions, with the maximum value $\sim 0.55 \AA$, see Table 1 ; they are, however, far from isotropic with average magnitudes $0.09,0.23$ and $0.23 \AA$ along the a, b and c axes, respectively.

Ferroelectrics generally exhibit the highest P_{s} values, in the range ~ 10 to $70 \times 10^{-2} \mathrm{Cm}^{-2}$, for materials with atomic displacements under polarization reversal that are primarily one-dimensional. Intermediate magnitudes of P_{s}, ranging from ~ 3 to $10 \times 10^{-2} \mathrm{C} \mathrm{m}^{-2}$, correspond to atomic displacements that are primarily two-dimensional under ferroelectric
switching; ferroelectrics with displacements of comparable magnitude in each dimension have the lowest magnitudes with $P_{s} \lesssim 3 \times 10^{-2} \mathrm{C} \mathrm{m}^{-2}$ (Abrahams \& Keve, 1971).

The magnitude and sense of P_{s} in SrMgF_{4} may be derived from (2), using the atomic coordinates in Table 1 and a point charge model

$$
\begin{equation*}
P_{s}=(e / V) \Sigma Z_{j} \Delta z_{j} \tag{2}
\end{equation*}
$$

Summation over volume V for one unit cell containing j ions of charge Z_{j} (2+ for Sr and for $\mathrm{Mg}, 1-$ for F) displaced by Δz_{j} from the paraelectric arrangement, see Table 1, gives $P_{s}=$ $10.6(6) \times 10^{-2} \mathrm{C} \mathrm{m}^{-2}$. This value is consistent with the distribution of atomic displacements in Table 1, both magnitude and dimensionality agreeing with the classification of SrMgF_{4} as, primarily, a two-dimensional ferroelectric.

The strong polar properties of SrMgF_{4} noted herein, together with the possibility of growing single crystals as large as the samples with $\sim 18 \mathrm{~mm}$ diameter and 30 mm length reported by Ishizawa et al. (2001), offer the potential for use in a variety of pyroelectric, piezoelectric and nonlinear optical applications.

4. Phase transition nomenclature for SrMgF_{4}

The recommended nomenclature of Tolédano et al. (1998) for the hypothetical prototype phase I and predicted ferroelectric phase II of SrMgF_{4}, based on the results above, follows.

$$
\left.\begin{aligned}
& \text { I }\left|\begin{array}{c|c|c|c}
>450 \\
(350) \mathrm{K} & P 112_{1} / m \\
(11)
\end{array}\right| Z=12
\end{aligned} \right\rvert\, \begin{gathered}
\text { Nonferroic } \\
\text { Hypothetical } \\
\text { prototype phase }
\end{gathered}
$$

It is a pleasure to thank the referee who noted the possibility of alternative supergroups and the National Science Foundation (DMR-9708246) for partial support of this work.

References

Abrahams, S. C. (2000). Acta Cryst. B56, 793-804.
Abrahams, S. C. (2001). Acta Cryst. B57, 485-490.
Abrahams, S. C. \& Keve, E. T. (1971). Ferroelectrics, pp. 129-154.
Abrahams, S. C., Kurtz, S. K. \& Jamieson, P. B. (1968). Phys. Rev. 172, 551-553.
Averdunk, F. \& Hoppe, R. (1988). Z. Anorg. Allg. Chem. 559, 111117.

Banks, E., Nakajima, S. \& Shone, M. (1980). J. Electrochem. Soc. Technol. 127, 2234-2239.
Bingyi, Q. \& Banks, E. (1982). Mater. Res. Bull. 17, 1185-1189.
Cox, D. E., Eibschütz, M., Guggenheim, H. J. \& Holmes, L. (1970). J. Appl. Phys. 41, 943-945.
Eibschütz, M., Guggenheim, H. J., Wemple, S. H., Camlibel, I. \& DiDomenico Jr, M. (1969). Phys. Lett. A, 29, 409-410.
Gingl, F. (1997). Z. Anorg. Allg. Chem. 623, 705-709.
Ishizawa, N., Suda, K., Etschmann, B. E., Oya, T. \& Kodama, N. (2001). Acta Cryst. C57, 784-786.

Keve, E. T., Abrahams, S. C. \& Bernstein, J. L. (1969). J. Chem. Phys. 51, 4928-4936.
Keve, E. T., Abrahams, S. C. \& Bernstein, J. L. (1970). J. Chem. Phys. 53, 3279-3287.
Lapasset, J., Bordallo, H. N., Almairac, R. \& Nouet, J. (1996). Z. Kristallogr. 211, 934-935.
Schnering, H. G. von \& Bleckmann, P. (1968). Naturwissenschaften, 55, 342-343.
Sun, Z., Zhang, X., Song, L., Wu, H., Pan, Z. \& Wang, A. (1995). Fushun Shiyou Xueyuan Xuebao, 15, 26-28.
Tolédano, J.-C., Glazer, A. M., Hahn, Th., Parthé, E., Roth, R. S., Berry, R. S., Metselaar, R. \& Abrahams, S. C. (1998). Acta Cryst. A54, 1028-1033.
Wu, Y. \& Shi, C. (1995). Wuli Hиахие Xuebao, 11, 907-911.
Wu, Y. \& Shi, C. (1996). Hиахие Xuebao, 54, 468-474.

Structurally ferroelectric SrMgF_{4}

S. C. Abrahams

Physics Department, Southern Oregon University, Ashland, OR 97520, USA
In the paper by Abrahams (2002) Acta Cryst. (2002), B58, 3437 two errors were printed. First, in the abstract the Curie temperature was incorrectly given as 1450 K . The correct value is 450 K . The second error occurs in section (a) of p . 36. The polar displacement expression is currently given as $\Delta z_{l} \simeq 1 \AA$. The correct expression should be $\Delta z_{i} \simeq 1 \AA$.

References

Abrahams, S. C. (2002). Acta Cryst. B58, 34-37.

[^0]: ${ }^{1}$ Units inconsistent with the SI, but in customary use for spontaneous polarization magnitudes.

